-
TypeJournal Article
-
Published in
-
Year2018
-
Author(s)
Mannan, Mehzabeen; Al-Ansari, Tareq; Mackey, Hamish R.; Al-Ghamdi, Sami G. -
URL
-
DOI
-
ID
2954
Quantifying the energy, water and food nexus: A review of the latest developments based on life-cycle assessment
Energy, water and food resource scarcity caused by rapid population growth, climate change, imbalanced ecosystems, and economic diversification, is the biggest challenge for today's world. In recent decades, the importance of the interdependent relationship between these resources has been recognized as the energy-water-food nexus. Sustainable resource consumption and the capability to ascertain true resource consumption is crucial for modern day development. As such, wide-spread adoption of the energy-water-food nexus methodology for integrated resource modeling can significantly contribute toward resource productivity and continuity. This methodology has expanded over the years, from concept development to application in multiple case studies. The methodology has also enabled the identification of synergies and trade-offs within the sub-systems that constitute the overall energy-water-food nexus system, hence providing a mechanism for optimization in resource consumption and minimization in the total environmental burden in the system under evaluation. This paper has reviewed the interlinkages inherent in the energy-water-food nexus, and the progress in developing suitable quantification methods. Although there is no standardized methodology for analysis involving the energy-water-food nexus, the life-cycle assessment methodology has been used as an enabler for the quantification of environmental burdens of systems evaluated using the ‘Nexus’ approach. As such, this paper will provide an overview of the different applications in which the life cycle assessment methodology has been applied to energy-water-food nexus analysis. The paper concludes that an integrated life cycle assessment and energy-water-food nexus methodology is necessary to determine environmental burdens for different scenarios presented within systems operating within an energy-water-food nexus environment, essentially influencing energy-water-food resource sectors.
Something wrong with this information? Report errors here.